Improvement of shelf-life of beef using lactic acid, Naascorbate mixture, and potassium sorbate

Munkhnasan Enkhbold¹, Attila Lőrincz², Majd Elayan¹, László Friedrich¹, József Surányi¹, Adrienn Tóth¹ ¹Department of Livestock and Food Preservation Technology, Hungarian University of Agriculture and Life Sciences, Menesi st 44, H-1118 Budapest, Hungary

²VADEX Mezőföldi Erdő – és Vadgazdálkodási Zrt., Petőfi Sándor st. 275, 8123 Soponya, Hungary

Introduction

Consumers evaluate meat colour as a fundamental factor for determining meat quality and acceptance [1]. The main problems causing shelf-life quality deterioration of meat and meat products are microbial growth and oxidative rancidity. As a result, the meat industry and researchers have been on the lookout for new substances or additions to help extend the colour stability of fresh meat [2]. In this work the effect of lactic acid, Na-ascorbate, and potassium sorbate treatments was evaluated with spraying method in beef surface on meat quality parameters like colour and microbiological load. The aim of this work was to define a shelf-life and storage recommendation for beef.

Results

Methods

• A mixture of 2% lactic acid (LA) + 0.5% Naascorbate (NA), 2% LA + 1% NA, 2% LA + 2% NA, and 1%, 2%, and 3% potassium sorbate (PS) were applied to beef samples.

Figure 1. Difference between (a) day 0 and (b) day 11 treated samples with 2% lactic acid+2% Na-ascorbate mixture.

Table 1. Effects of lactic acid (LA) with Na-ascorbate (NA), and Potassium sorbate (PS) on CIE L*, a* and b* of beef steaks surface measured on the day 0 and 20 of vacuum-storage at 0.5-3°C

Treatments	day 0			day 20		
	L *	a *	b*	L *	a *	b*
2% LA + 0,5% NA	41.60	12.74	5.02	33.65	13.06	2.08
2% LA + 1% NA	42.37	13.58	4.44	33.41	12.87	1.90
2% LA + 2% NA	44.40	13.66	3.83	36.53	10.53	1.28
1% PS	42.63	13.91	2.45	34.27	10.82	0.99
2% PS	42.09	14.10	1.85	34.77	11.41	1.44
3% PS	42.82	12.89	1.83	38.39	10.00	0.84
Control	40.82	13.34	1.93	34.77	10.66	0.71

- After treatment samples were vacuum packed.
- The samples were stored at 0.5-3 °C for 20 days.
- Quality parameters was measured on days: 0, 4, 11, and 20.
- Beef surface colour was determined using a colorimeter. L*, a* and b* values were measured and colour differences (ΔE_{ab}^*) were calculated.
- In microbiological testing after treatments samples were examined for mesophyll aerobes and Enterobacteriaceae cell counts.

Results

1. Colour measurement

Colour difference ΔE^*ab was calculated for each sample. Colour measurement data indicate that

Conclusion

Result from this study indicate that the treatment of lactic acid combined with Na-ascorbate and potassium sorbate had significant advantages to maintaining shelf-life. Therefore, lactic acid, Naascorbate, and potassium sorbate treatments may be an alternative to extend beef shelf life.

References

there was noticeable changes during storage 20 days for all samples. The L*, a*, and b* values of samples treated with LA, NA, and PS significantly (P<0.05) decreased in the end of the experiment period. Changes in CIE L*, a* and b* values throughout the display of beef steaks are shown in Table 1.

[1] Cornforth, D. (1994). Colour—its basis and importance. In Quality attributes and their measurement in meat, poultry, and fish products pp. 34-78.

[2] Greene, B. E., Hsin, I. M., & Zipser, M. Y. W. (1971). Retardation of oxidative colour changes in raw ground beef. Journal of Food Science, 36(6), pp. 940-942.

Acknowledgements

The research was supported by the Hungarian University of Agriculture and Life

Sciences's Doctoral School of Food Science, EFOP-3.6.3-VEKOP-16-2017-00005 and 2020-1.1.2-PIACI-KFI-2020-00027.

